Build
Awesome
Websites With
Flask Python

Build Awesome Websites With Flask Python

Christopher W. Pitts

July 12, 2017

Disclaimer

Build
Awesome
Websites With
Flask Python

The views in this presentation are entirely my own, and in
no way represent any sort of official or unofficial
endorsement by Sandia National Laboratories or NTESS.

About Me

Build
Awesome
Websites With
Flask Python

Christopher

W. Pitts @ From Albuquerque, New Mexico
Intro @ Raging Star Wars fan

o Still bitter about Disney and the Expanded Universe
@ Studied computer science at Brigham Young University

@ Software Systems Engineer at Sandia National
Laboratories

@ |k spreek Hollands (ook Vlaams)!
@ Happily married

Core Assumptions

Build
Awesome
Websites With
Flask Python

In order to maximize your takeaway from this presentation,
there are a few things I've assumed about you:

Core Assumptions

Build
Awesome
Websites With
Flask Python

her

In order to maximize your takeaway from this presentation,
there are a few things I've assumed about you:

@ Familiarity with Python

Core Assumptions

Build
Awesome
Websites With
Flask Python

In order to maximize your takeaway from this presentation,
there are a few things I've assumed about you:

@ Familiarity with Python

@ Understanding of basic HTTP concepts

e “Verbs”: GET, POST, etc.
e Endpoints
@ Return codes: 200, 404, 418, etc.

Overview

Build
Awesome

Websites With
Flask Python o In’[rO

e Overview

S e Why Python?
@ Why Flask?
© ABasic App
Q@ Flask Goodies

@ From Dev To Prod

Why Choose Python For Web Development?

Build
Awesome
Websites With
Flask Python

Not the obvious first choice
@ Apache/NGINX/etc. written in C/C++
@ Interpreted, not compiled
@ Semantic whitespace

Why Python?

The Pros Of Python

Build
Awesome
Websites With
Flask Python

@ Rapid development
o It's easier to get going in Python
o Fewer initial stumbling blocks (although arguably more
Why Python? Iater)

@ Easy deployment
o Containerizing is easy with virtual environments
@ Lots of community support
o Easily one of the most well-supported communities

Why Choose Flask?

Build
Awesome
Websites With
Flask Python

Some nice things about Flask:

Christopher
W. Pitts

@ Easy endpoint definition
@app.route(“/your/path/here”)

@ Page templates
Jinja2 templating engine

@ Pythonic, programmatic definition of an API

@ Parameterization of endpoints
@app.route(“/path/with/<param>”)

def route_handler(param):
Do stuff

Why Flask?

Why Choose Flask?

Build
Awesome
Websites With
Flask Python

Some things that use/have used Flask:

@ Pinterest

@ Former U.S. president Barack Obama’s reelection
campaign

@ HTTPBIn (httpbin.org)

@ Twilio (REST API)

@ Lyft (backend)

Why Flask?

GET Off The Ground

Build
Awesome
Websites With
Flask Python

her

Let’s take a look at a basic Flask web app!

A Basic App

GET Off The Ground

Build
Awesome
Websites With

Flask Python Initializes a Flask object and stores
it in the 'app' variable

mirn

mirn

app = Flask(__name__)

Defines a 'route' or endpoint
@app.route("/™)

A Basic App def index():

return render_template("index.html")

Run the app

if __name__ == "__main__":
app . run(debug=True,
port=5050,

host="0.0.0.0")

Going POSTal

Build
Awesome
Websites With
Flask Python

her

What if we wanted to allow the user to submit data to the
website?

A Basic App

Going POSTal

Build
Awesome
Websites With app = Flask(__name__)
Flask Python

i

Notice the additional argument in the
app.route decorator

@app.route("/post", methods=["POST"])
def handle_post():

A Basic App data = dict(request.get_json())

Multivalue return sets return code
return jsonify(data), 201

if __name__ == "__main__
app . run(debug=True,
port=5050,

host="0.0.0.0")

Some Supporting Tools

Build
Awesome
Websites With
Flask Python

A powerful stack
@ Linux
@ NGINX
@ MariaDB
A Basic App @ Python
Other good tools
@ Supervisor

pip install

Build
Awesome
Websites With
Flask Python

her

Useful Python Libraries
o flask_moment
e MySQL-python

A Basic App 4 sqlalchemy

@ uwsgi

PUTting Things Together

Build
Awesome
Websites With
Flask Python

How about updating a resource?

A Basic App

PUTting Things Together

Build
Awesome
Websites With
Flask Python app = Flask (__name__)

@app.route("/put", methods=["PUT"])

def handle_put(Q):
data = dict(request.get_json())
Update the data or something awesome
like that

i

A Basic App

return jsonify(data), 204

if __name__ == "__main__":
app.run(debug=True,
port=5050,

host="0.0.0.0")

DELETE Puns Are Hard

Build
Awesome
Websites With
Flask Python

Deleting a resource?

A Basic App

DELETE Puns Are Hard

Build
Awesome
Websites With
Flask Python

app = Flask(__name__)

@app.route("/delete", methods=["DELETE"])
def handle_delete():

data = dict(request.get_json())

Delete the resource

return jsonify(data)

A Basic App
if __name__ == "__main__":
app.run(debug=True,
port=5050,

host="0.0.0.0")

Multitasking Endpoints

Build
Awesome
Websites With
Flask Python

Thankfully, you don’t have to define one method for each
HTTP verb.

A Basic App

Multitasking Endpoints

Build
Awesome

Websites With # All the methods!
Flask Python @app.route("/resource",
methods=["GET",

"POST",
"PUT",
"DELETE"])
def handle_request():
A Basic App if request.method == "GET":
pass # Return a resource
elif request.method == "POST":
pass # (Create a resource
elif request.method == "PUT":
pass # Update a resource
elif request.method == "DELETE":

pass # Delete a resource

Page Templates

Build
Awesome
Websites With
Flask Python

What if we wanted to create dynamic content server-side?

Flask Goodies

Page Templates

Build
Awesome
Websites With
Flask Python

Let’s look at a Jinja2 template!

Flask Goodies

Page Templates

Build
Awesome
Websites With . .
Flask Python <!--Variables are enclosed in {{}}-->

<hl>{{var}}</hl1>

<!I--Flow control and loops are in {%%}-->
{% if var2 %}
<h2>{{var2}}</h2>
{% endif %}

{% for item in listVar %}
<!--Support for Python objects-->
<p>{{item.name} }</p></1i>
{% endfor %}

Flask Goodies

Page Templates

Build
Awesome
Websites With
Flask Python

her

A few notes
@ Written directly into the HTML file
@ Explicit ending of loops and flow control
@ Awesome support for Python objects

@ Jinja2 is not an HTML-specific format

o Lots of discussion on the internet about automating
report generation with Jinja2, Python, and IATEX

Flask Goodies

Page Templates

Build
Awesome
Websites With
Flask Python

Passing variables to a template:

@app.route("/template")
def templates_are_awesome():

var="I replaced {{var1}}!"

return render_template("variables.html",

varl=var,

Flask Goodies listVar=["Item 1",
"Item 2",
"Ttem 3"])

Page Templates

Build
Awesome
Websites With
Flask Python

The template:
<p>{{varl}}</p>

{% for item in var2 %}
{{item}}</1i>
Flask Goodies {% endfor %}

Page Templates

Build
Awesome
Websites With
Flask Python

The finished product:

<p>I replaced {{varl}}!</p>

Item 1</1li>
Item 2</1i>
Flask Goodies Item 3</1i>

Page Templates

Build
Awesome
Websites With
Flask Python

her

Jinja2 also has support for:
@ Dictionaries
@ Custom objects
@ Autoescaping strings
Flask Goodies @ Unicode (is built in)

Error Handlers

Build
Awesome
Websites With
Flask Python

Have you ever wanted a custom error page?

Flask Goodies

Error Handlers

Build
Awesome
Websites With
Flask Python

Flask has support for that!
@app.errorhandler (404)

def page_not_found(err):
return render_template("404.html")

Flask Goodies

From Dev To Prod

Build
Awesome
Websites With
Flask Python

her

Playing in a dev sandbox is fun, but at some point in the
future we’d like to push this app of ours to production.

From Dev To
Prod

Flask’s Dev Server IS NOT STABLE

Build
Awesome
Websites With
Flask Python

Christopher

W. Pitts

This is by design, you should use a production web server.
I recommend NGINX. Minimal configuration and good
performance.

And readable config files!

From Dev To
Prod

Jrun_forever?

Build
Awesome
Websites With
Flask Python

her

No. Gross.
nohup server.py && exit?
No. Still gross.

Use Supervisor to keep the application running after logout.

From Dev To

Prod

Gluing Flask To NGINX

Build
Awesome
Websites With
Flask Python

UWSGI
@ Defined in PEP 333/3333
@ Middleware between application and server

From Dev To
Prod

Build
Awesome
Websites With
Flask Python

From Dev To
Prod

References

= Flask

Awesome

sl hitps://flask.pocoo.org
https://www.fullstackpython.com/flask.html

Python
https://docs.python.org/3

MariaDB
https://mariadb.org

From Dev To

Prod NGINX

https://nginx.org/en

Supervisor
http://supervisord.org

References

Build
Awesome
Websites With
Flask Python

Linux
https://linux.org
http://tldp.org

IATEX
https://latex.org
https://latex-project.org

From Dev To

Prod

	Intro
	Overview
	Why Python?
	Why Flask?
	A Basic App
	Flask Goodies
	From Dev To Prod

